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Abstract

This paper examines the accuracy and calculation speed for the magnetic field computation in an

axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid,

high order finite difference approximations and semi-analitical calculation of boundary conditions are

considered. These techniques are being applied to the modeling of the Variable Specific Impulse

Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic

advantages over a second-order scheme. For complex physical configurations of interest in plasma

propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative

advantages of various methods are described when the speed of computation is an important

consideration.

I. Introduction

Computing the axisymmetric magnetic field generated by the current in a coil is a numerical problem

frequently encountered in the mathematical modeling of plasma flows, charged particle beams [1, 2, 3],

and other areas of physics. The problem can be approached in a variety of ways involving numerical

integration methods as well as finite difference, finite volume, finite element, or other numerical

methods for solving partial differential equations. All methods produce results, which may trade off

computational speed for accuracy. The results depend very much on the order of approximation, the

use of uniform or nonuniform grids, and other factors. For steady state solutions, the numerical

approach may be different than for those solutions involving time dependence.

One important area of interest involves the study of plasma behavior in the Variable Specific Impulse

Magnetoplasma Rocket (VASIMR) engine [4]. This new space propulsion concept is being studied at

the Advanced Space Propulsion Laboratory (ASPL) of the NASA Johnson Space Center in Houston,

Texas. Numerical simulation data are a crucial element of this research. They allow us to accurately

predict system performance before developing costly experimental test equipment. In addition,

numerical modeling is helpful in the design of plasma heating schemes and understanding plasma

behavior in the VASIMR.

A number of factors direct requirements on code accuracy and computational speed. For example, the

measurement accuracy of magnetic field with most available laboratory instrumentation is about O. 1%

[5, 6]. Furthermore, magnetic coils can only be positioned with a limited degree of precision. These

experimental realities limit the relative error, which can be experimentally verified to about 0.001. On

the other hand, simulating plasma instabilities and other more complex dynamics may require a high-

accuracy numerical solution. Such accurate solutions may also be useful in developing plasma control

algorithms for an operational device. Still another important issue pertains to solver speed, as the

complex iterative mathematical modeling of a magnetoplasma thruster requires multiple fast

recalculation of the magnetostatic problem.

Finite difference and finite volume methods are widely used for solving the magnetostatic problem [7-

9]. In previous publications, researchers have approached the problem in Cartesian coordinates. We,

in turn, use a cylindrical coordinate formulation, assuming axial symmetry, and explore a high-order

finite volume approximation. In addition, we analyze and describe the effects of uniform vs.

nonuniform grids with respect to accuracy, computational speed and robustness. The results are

presented in the context of the VASIMR described briefly in the next section.



2. VASIMR system

The VASIMR system is a high-power-density magnetoplasma rocket, which is capable of real-time

exhaust modulation for optimum performance. In the system, shown in Figure 1, hydrogen plasma is

created, heated, and expelled through an open-ended magnetic configuration to provide modulated

rocket thrust. The genera[ magnetic structure of the VASIMR is that of an asymmetric magnetic

mirror, comprising three linked magnetic stages. The present system preserves azimuthal symmetry.

The magnetic configuration of the VASIMR---combined with its approach to plasma generation,

heating, and acceleration---results in a unique engine whose theoretical performance far exceeds that

of present-day rockets [10, 11].

LIQUID GAS
SEPARATOR

SY$'tl_O, ......

HELICON ANTENNA ICRF ANTENNA
ARRAY

RADIATIVE COOLING PANEL SUPERCONDUCTING ELECTROMAGNETS

-- ELECTRICAL POWER

Figure 1. The VASIMR system.
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Figure 2. Projected design of the first spaceflight low-power VASIMR thruster.

A simpler variation of the VASIMR system is shown in Figure 2. In this configuration, the exhaust and heating

cells are merged to provide a simpler geometry, albeit with some limitations in performance. This shapler

VASIMR will be used in the fast flight experiment envisioned to demonstrate this technology. Denoted the

"radiation and technology demonstrator" (RTD), this experiment is currently the subject of considerable

theoretical and experimental study.

An experimental evaluation of the VASIMR performance is being conducted in a laboratory device which

uses simple liquid nitrogen-cooled copper magnets. These units are integrated into a vacuum structure by

placing them in stainless steel enclosures, which can withstand the atmospheric pressure forces. The coils are

attached to a structural spacer, which provides diagnostic and view port access. While this magnet assembly

would be unsuitable for spaceflight, the resulting magnetic field closely resembles that of the actual RTD flight

experiment and can be comfortably studied in the laboratory. Figure 3 shows a composite trimetric view of

the present experiment configuration with an actual photograph of the device.



vacuum tank ........

magnet coils

Figure 3. Trimetric view with an actuai photo of the present VASIMR configuration at the ASPL.

3. The fundamental magnetostatic problem

The magnetostatic problem is a steady state case of two vector Maxwell equations:

vx-1 B=p B=V×A, (1)
/z

where B is the magnetic induction vector,/As the magnetic permeabili_', p is the current density and A is the

magnetic vector potential. This paper is devoted to the fast and accurate calculation of B for a specified

azimuthal current density pin the special case of cylindrical symmetry and constant magnetic permeability/.z

In that case, the magnetic vector potential A, written in the cylindrical coordinate system (r, Q z), has only an

azimuthal nonzero component: A = (0, Ao(r, z), O) and the problem (1) can be rewritten in the following form:

-r- - f(r,z) =/._rp, (r,z)e -(2 (2)
br r br _z:

where u(r, z) = r A o(r, z) is the magnetic flux, shown in Figure 4, and _r'2is a computational domain.

i



1 iiB ds

J

B

Figure 4. Definition of the magnetic flux u(r, z).

Theoretically, the azimuthal component of the magnetic vector potential for the magnetic field

generated by a coil with arbitrary cross section can be computed by numerically integrating the

following analytical formula over the coil cross section c [12]:

Ao (r, z) = p 1 -
S

C

_ 4rr'-E dr'dz'; s- (r+r') 2 +(z+z,): , (3)

where K and E are full elliptic integrals of the first and second kind, respectively [ 13]. If the number

of grid points and the number of numerical integration points are large, then the computational time

can be excessive. In order to reduce computational time, equation (2) is solved in a gridded domain

using finite difference (FDM), finite element (FEM), or finite volume (FVM) methods. In some cases,

numerical integration of equation (3) is still useful for calculating the magnetic potential over a much

smaller domain, such as for determining boundary conditions.

4. Solution strategy

In order to solve the magnetostatic problem of equation (2) in a computer we need to discretize it from

its partial differential form into a system of algebraic equations using an approximation technique.

Furthermore, the computational domain, shown in Figure 5, must be discretized also into a mesh of

nodal points. Let us take on the domain discretization first.

4.1 Domain discretization

For simplicity, we consider a single coil with rectangular cross section c = {RI < r < R:, Z1 < z < Z:}

in the rectangular computational domain .Q = {0 < r < R3, Zo < z < Z3}. Since the coil is symmetric

with respect to z = 0, the computational domain can be reduced by half to -(2 = {0 < r < R3, 0 < z < Z3}

with a boundary condition du/dz = 0 at z = 0, based on symmetry. Another boundary condition, u = 0

at r = 0, follows from the definition of u(r, z).



Following the geometry of Figure 5, the above domain can be discretized as follows. Let h' and h-"be

mesh steps for the mesh:

_N r

ro = O

rl =ro+h _

r2 = rl + h f

r3 = re + hS

r

= rN_ 1 + hN_ 1

z 0 =0

Z I = Z0 + h_

Z 2 = Z 1 + h I

z 3 = z 2 + ]15

ZN. = ZN,,-1 + h_,, -1
zr

Finally, let us define a new array u o such that u_ = u(ri, zj) at each node of the rectangular grid.

4.2 Equation discretization

After the computational domain is discretized, the second step is to approximate equation (2) into a set

of algebraic equations with respect to uo. We explore two techniques to do this. The first one is a 9-

point, finite difference, fourth-order on uniform grid (9FD4U) approximation. The complete details of

the derivation are described in Appendix i. The result is the following system of algebraic equations

with respect to uo.:

pOijuij -- Pliju__Lj - P20.Ui,j_ I -- p3ou_+z, j - p4_u_j+_ - p50,ui_Lj+_

- p6ou,_Ly_ _- pT_u_+LH -- p8_u_+Lj+_ = fOq, i = 2,...N, - I, j = 2 .... N_ - I,
(4)

where the coefficients and right-hand side formulas are given by:



8 2ri I hz2

pO i = _. pki, p2 i - _5k 3hz2(4ri 2 - hr 2 ) hr 2

p3i = 5hz 2 - hr 2 1
2 2 = pli+l' p7i -

6hr hz ri+I/2 12ri+1/2

3 hr2 I= p4i,

2r/ )

fO O"= fij-7- _ _(fij' - fi-l,j )+--(fq- fi+l/2) +ri+l/22 fo" - fi.j-l-._',j+l "

(5)

Figure 6 shows stencils for the 9-point and 5-point schemes described in this paper.
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Figure 6. 9-point and 5-point stencils with local numeration of the nodal points.

A similar 9-point finite difference scheme for the Poisson equation in Cartesian coordinates is well

known [7-9]. However, such schemes have not been investigated thoroughly for partial differential

equations in cylindrical coordinates as in our case.

The efficient use of this method has some limitations. For example, its accuracy is greatly reduced

when using a nonuniform mesh. Also, the grid aspect ratio (h,/h-,) must be close to unity as described

in equation (19) of Appendix 1. Further still, use of a uniform mesh requires the computational

domain size to be comparable to the characteristic dimension of the magnet. In such cases it may be

necessary to calculate non-zero boundary conditions, using analytical formula (3). This may not be

convenient, when computing field values over much larger domains or when computing field

contributions due to internal plasma currents.

The generalization of the high-order discretization using finite volume approach is described in

Appendix 2. Appendix 3 discusses fast and accurate ways to derive boundary conditions by numerical

integration of analytical formula (3). The results of the investigation of the 9FD4U method will be

presented below after we discuss a second approach.



While the 9FD4U methodhasgrid uniformity limitations,a simplerschemeusinga 5-point stencil is
available. This methoddoesnot suffer from previousmeshuniformity restrictionsand yields faster
solutionsdue to the reducedcomputationalload. Thesebenefits,however,comeat the expenseof
accuracy.We havecompared the relative advantages and disadvantages that each method offers and

present these results in tabular form in Table 1. We now describe the 5-point scheme in detail.

We will use the name "5FD2N" to refer to the 5-point finite difference second-order on nonuniform

mesh technique, which can be presented by the following system of algebraic equations with respect to

uij:

POo.u O.- plijUi_l, j - P20.ui,j_ 1 - p30.Ui+l, j - P40.ui,j+ I = fO0-, i = 2,...N r - I, j = 2 .... N z - 1, (6)

where the coefficients and right-hand side formulas are given by:

4 hj_l+h J

pO O. = _,pko., pl O - _ p3i_l,j,
k ri_i/2hr_l

hf_z + hf
p2ij = = p4i,j_ 1,

rih}-1

h r r z z
( i-1 + hi )(h j-1 + hj ) fij"

f°° - 2ri

(7)

The scheme has been previously used [2]. One advantage of this method is that the matrix of the

system for any mesh steps is less dense than one for the 9-point scheme and the system (6-7) has a

solution for any grid. Another advantage is that using a nonuniform mesh allows the use of a large

computational domain without sacrificing the minimal mesh size and keeping computational error

small. Furthermore, using a nonuniform mesh allows the use of very large domains. This in turn

permits the boundary condition u = 0 to be used instead of the more computationally expensive

numerical integration of formula (3).

Both numerical approximations are compared below.



Features\ Methods

1)Approximation
accuracy

2) Sparsityof the
matrix

3) Meshrequirements

4) Computational
domain

5) Boundaryconditions

6) Iterativesolver
performance(number
of iteration)

7) Number of

arithmetic operations

per iteration

8) Applicability to

currents in a complex

geometry

9) Inclusion of the
current source in the

domain

9FD4U

fourth-order: k = 4

9-diagonal

Required uniform mesh with

h,/h= in some range.

Composition of uniform

meshes introduces

increasing error

Because of 3), domain

cannot be very large

Because of 4), BC needs to

be calculated using

numerical integration of

analytical formula

Because of 3), matrix does

not have big condition

number, hence the solver

needs fewer iterations

Because of 2), each iteration

requires more arithmetic

operations

Because of 5), it is very
difficult to use the method

for non-rectangular coils or

plasma currents

If the currents source is

inside the computational

domain, the error may be

large

5FD2N

(_) second-order: k = 2 (_

(_) 5-diagonal (_)

(_) Nonuniform mesh works as (_)
good as uniform, when lh,--

hi+ ll=O(h)

(_) Because of 3), mesh can be (_
large

(_) For large computational (_)
domain, BC can be zero

without introducing big

error

(_) Because of 3), the matrix @
may have a big condition

number, hence the solver

needs more iterations

(_ Because of 2), each iteration (_
requires fewer arithmetic

operations

(_ Because of 5), there is no t_
problem using the method

for non-rectangular coils or

plasma currents

(_ Inclusion of the current
source into the domain does

not increase the error

Table I. Comparison of the 9-point finite difference fourth-order on uniform grid approximation with 5-

point finite difference second-order on nonuniform mesh approximation. Symbols _ and _ are used to

show pros and cons for each scheme.



One of the important features of approximation methods, compared in the Table 1, is accuracy. In

general, accuracy refers to how close the numerical solution approaches the exact one. We choose to

measure the accuracy by bounding the difference between these two solutions to some constant times a

power of the step size. This is expressed by

max lu O.-lta(ri,zj)l <- C min( h ) k = O( h k ) , (8)

where the analytical solution u" can be calculated from formula (3). The value ofk refers to the order

of the numerical error, or order of accuracy. The higher the value of k, the more accurate the solution

becomes. In order to find a value of k, one can proceed with the full numerical and analytical

evaluation of the left-hand side. However, it has been shown [2] that the k value can be obtained

without requiring this lengthy approach, by using a qualitative analysis of the numerical

approximations. Using this method, the value of k is found to be k = 4 for the 9FD4U scheme. For

4FD2N, if a quasi-uniform grid is used, i.e. ]hi- hi-z] = O(h2), then k = 2. k = 1 for both schemes,

when an arbitrary uniform grid is used.

Z

4.3 Solving the algebraic system

Both finite difference schemes represent the partial differential problem (2) by a system of linear

algebraic equations. The 9FD4U algebraic system is presented in (4) and the 5FD2N in (6). The

resulting linear algebraic systems can be represented by a matrix of the form:

Ah llh =ft.

Such algebraic systems can be solved either by direct or iterative methods [2, 14].

(9)

The resulting linear algebraic systems, presented in this report, are solved by the fast iterative implicit

incomplete factorization method [14 - 15]. The stop criteria for the iterative process of calculating uh_

is the following inequality:

= 10 -II . (10)

The number of iterations n(e) depends on the computational domain and grid and normally is between

20 and 40.

5. Numerical experiments for a single coil

5.1 ID tests

A number of numerical experiments were performed to test the accuracy of the numerical methods.

The first and simplest corresponds to the infinite solenoid representing the 1D solution. The solution

results are shown in Appendix 4. The error for the 9FD4U scheme is virtually zero. For the 5FD2N,

the error is very small and decreases as h 2. The second and more interesting set of tests is shown

below and corresponds to a single coil of finite size.

10



5.2 Coil complexity

The complexity of solving a magnetostatic problem for a finite rectangular cross-section coil is affected

by the coil aspect. This is so because the mesh must be compatible with the coil shape. From the

mesh-generation point of view, it is difficult to discretize the computational domain for a very thin,

very narrow coil or a coil with a very small hole, as illustrated in Figure 7. In general, a nonuniform

mesh is preferable when dealing with a difficult coil.

Difficult coil Easy coil

Hole too small Too thin Too narrow

Figure 7. Difficult vs. easy coils from the mesh-generation point of view.

5.3 Deriving an exact solution and calculating the numerical error

The first test was considered for the "easy" coil "cl" with a cross section c = [0.5, 1] x[-0.5, 0.5] and a

current density corresponding/,tp = 1. The solution for this problem is plotted in Figure 8.
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0.5

- _ _ / i

. \ \., ..,......-,......:_=:-.-,.,i,,! // .
\ \ "--\ \_ L' " X/_%_-'--ZL_-_=_.'_ ", ; ///i/ It

\. \ . \. , 's '/ / / ," o. i\
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+ ___ I i l r

I2 "1 "5 "1 "0"5 0 0"5

Z

-0.5

// t/ i -,,,,<,,\_ \

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Z

\

0 Numerical-- Analytical

o

J i I

1 13 2

Figure 8. A magnetic field near an "easy" coil. Left: magnetic field lines (contour lines for the magnetic
flux u(r, z)). Right: axial magnetic field, calculated numerically and analytically along r = O.
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To study the accuracy of the two methods, the numerical solution was compared with a known

analytical solution calculated on the symmetry line r = 0 by the formula

.ozB=( , ): (z- Z,)t, R:
R, +(z-Z,) 2 -(z-Z2)lnR'R,-+ +4R_4R_++(z-Z2)2(zZ2) 2]' (ll)

where current density p is assumed constant in the coil. The following maximal and point-wise

relative errors on the symmetry line were observed:

" z - (O, zj
B_(O, j) B2 ) (12)

= max 38 (z); _5e (zj) =
=J max B_ (O, zj)l

where Bh(O,z) is the numerical solution calculated from the numerical magnetic flux solution uh at the

symmetry line r = 0, according to the scheme described in Appendix 5.

10 ° I I I I I I
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,, -,\ "- MagnetiG field B

if'/ "'--.. 64 x 64 mesh

___I_ et 6 mesh "

./ -,.64 X _4 rr-le.sr_

/" a F El4LF'r:net h lPJttfor Url {tor m rn o$t-_ . -..

- - ",-. 128 x 128 ¢_esh

/-" ,./ ,,,"" "_'-_ ,../ "%.. ,. ". .._

" " 256 "_"./"+ "--. X =.._ i"r'>4"S__
..P// /,.+" ...._ -.

__ I / l I I I I'- _--
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Z

Figure 9. Magnetic field B, (red line) and relative errors t_ of the magnetic fieid B for the single coil "c l ",
calculated on the symmetry line r = 0 by 5FD2N (blue lines) and 9FD4U (green lines) methods using three

different mesh sizes: 64 × 64, 128 x 128 and 256 × 256.
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5.4 Finite difference grid

The first comparison of accuracy of the two methods considers the dependence of the relative error on

the grid size. This is shown in Figure 9.

Two families of error plots corresponding to 5FD2N and 9FD4U methods are shown in blue and green

color, respectively. In each family three mesh structures were used, including 64 × 64, 128 × 128 and

256 × 256 grid points. Several features of Figure 9 merit discussion.

The second-order non uniform-mesh method 5FD2N is generally less accurate but has more constant

error along the domain. The fourth-order uniform-mesh method 9FD4U produces more accurate

solution but shows diverged error over the computational domain.

In all cases, the error decreases with increasing grid size in accordance with theoretical predictions.

For example, the second-order 5FD2N method makes the maximal relative error 6 decrease by factors

of 4 as 0.003, 0.0008 and 0.0002, when the grid step size h is divided by 2. On the other hand, the

fourth-order 9FD4U method makes the relative error 5 go down by factors of 16 as 8..10 5, 5.'10 -6, and

3..10 7, when the grid step size h is divided by 2. The strong discontinuities in the error plots are due

to several factors, such as the behavior of the anal)¢ical solution and its derivatives, the choice of grid

and the method used. The use of a fully adaptive grid will tend to smooth out these irregularities. This

is beyond the scope of this paper.

One can see that, to meet the current experimental requirements on accuracy of 10 -3, the scheme

5FD2N should be used with a 128 x 128 mesh. For the same requirements, the 9FD4U method can be

used with a 64 x 64 mesh. This shows an advantage of the 9FD4U (uniform) method when the

magnetostatic problem is solved for an easier coil.

Mesh configurations for both methods, as applied to an easier coil, are shown in Figure 10. The 2D

nonuniform mesh in Figure 10 (b) is a product of two nonuniform ID meshes. Each of them is fine

next to points of singularity: edges of the coil and the symmetry line r = 0. It was created

independently in the r and z directions, as described in Appendix 4 for the 1D case.

0.5

-0,5

05

-1.5

.-05

- 1 - 1

-2 -1 -05 0 05 1 I 5 2 -2 -1 5 4:1,5 0 05 1 1 5

a) 9FD4U b) 5FD2N

Figure 10. An example for the uniform (a) and nonuniform (b) finite difference meshes for "cl" coiL
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5.5 Domain size and boundary conditions

In the above calculation, the size of the computational domain: 1"2= {[0, 8] ×[-8, 8]} was chosen to be

about ten times the size of the coil. The requirement is particular to the magnetoplasma thruster

design. If the magnetic field needs to be calculated only near the coil, the computational domain can

be much smaller, simplifying the problem considerably.

Choosing an appropriate domain size is related to choosing appropriate boundary conditions. As

mentioned earlier, there are two ways of handling boundary conditions. First, a semi-analytical

formula given by equation (3) can be used to compute the field value at the boundary for both

methods. Second, the magnetic potential is assumed to be zero at the boundary, which is a good

assumption for a large domain.

In the first approach, formula (3) requires the use of a numerical integration technique described in

Appendix 3. Convergence of the boundary condition calculation method is presented in Appendix 6.

This method works well for both 9FD4U and 5FD2N schemes, when the current source is given as a

coil with small cross section.

For the large enough domain, the 5FD2N method can work efficiently with zero boundary conditions.

This property allows it to work efficiently for problems with complex current source terms, such as

plasma currents, when the first approach based on formula (3) cannot be used. The accuracy of the

5FD2N scheme with zero boundary conditions is demonstrated below. The 9FD4U scheme is taken

out of comparison there, because a large computational domain with a difficult coil requires too large a

uniform mesh.

Since an exact solution may not be small on the boundary, points close to the coil, the use of a small

domain with zero boundary conditions could be a source of the error. On the other hand, a large

domain could be an error source as well, if the grid is too coarse. The optimal domain size depends on

the coil geometry and can be found from numerical experiments. The dependence of the numerical

error from the domain size R3 and coil geometry for the fixed number of grid points is presented in

Figure 11.
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Figure 11. Maximal relative error 6 of the 5-point scheme 5FD2N, as a function of the domain size R3. 2D

calculations of the magnetostatic problem for "cl" and "c2" coils were performed, using semi-analytical
and zero boundary conditions. For each R3, the nonuniform mesh 128 by 128 was built to minimize the

relative error for ID problem.

Let's analyze the error for the "easy" coil "cl" and the long-shaped "difficult" coil "c2" with cross

section e = [0.049, 0.053]x[-0.2, 0.2], shown in Figure 11. The use of the semi-analytical boundary

conditions provides less error, especially for the small domain size Rj. Use of zero boundary

conditions produces a big error for the small domain size. Also, for sufficiently large domain size, the

error would grow, because the grid becomes coarse. The zero boundary conditions yield a minimum

error corresponding to some "optimal" value for the domain size R3.

Since the coil "c2" has a smaller and thinner cross section than "cl", the optimal domain size is

different. While the total number of mesh points is fixed at 128 by 128, the plots have minimums at R3

= 50, 6 = 0.0003 for coil "cl" and Rj = 8, 6 = 0.0002 for the coil "c2". These numerical tests

demonstrate the robustness and good performance of the 5FD2N scheme for solving the magnetostatic

problem for a difficult coil.
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6. Numerical experiments for a multi-coil system

Our ultimate test demonstrated in this section corresponds to the multiple-coil system involved in the

magnetoplasma thruster. This system consists of rectangular cross-section coils of different shape. This is

why our magnetostatic solver needs to work well for a variety of coil geometries.

In practice, the usual problem consists of computing the magnetic field of the set of various coils of different

sizes and placed at varying distances from one another. Fortunately, the principle of superposition applies and

the total field of the coil system is the sum of the fields of separate coils. In doing so, the size of the

computational domain and the number of mesh-points can be decreased dramatically. As shown in Figure 12,

a nonuniform mesh has singular points at the coil edges; hence the number of singular mesh points is bigger for

the multi-coil system. By breaking up the magnet into single coils, the number of singular mesh points is

greatly reduced.

i!i

+.

4_

Q.-_

fi [lflA'_dll,_

11 i_Lk

iH
_*m.t!!!!!

()

_ 71:::

i

14 i

_ m

!

singular mesh points

Figure 12. Illustration of the principle of superposition. The magnetic field for the multi-coil system

(top) can be calculated as a superposition of the magnetic fieids of each individual coil (bottom). Sample

nonuniform meshes are shown for the 5FD2N method.

The full magnet field of the low-power VASIMR thruster is shown in Figure 13. Table 2 specifies the various

magnet parameters.
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Figure 13. Magnetic field for the 14-coil magnetoplasma rocket configuration.
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13

14

Rl R2 Zl I Z:

0.04

J

0.1068 0.1108 0.02 2000.0

0.1028 0.1068 0.02 0.06 4000.0

0.1004 0.1028 0.02 0.12 6000.0

0.098 0.1004 0.02 0.16 8000.0

0.098 0.020.095

0.145 0.30750.095

0.095

0.101

0.103

0.18

0.3525

12000.0

0.101 0.39

0.103 0.45

0.105 0.47

ll0000.0

0.53 42000.0

0.53 8000.0

0.53 6000.0

0.105 0.107 0.49 0.53 4000.0

0.107 0.109 0.51 0.53 2000.0

0.113 0.117 0.53 0.61 16000.0

0.117 0.125 0.57 0.61 16000.0

0.125 0.145 0.59 0.61 20000.0

Section

Helicon

magnets

Choke

magnet

ICRH

magnets

Magnetic
nozzle

Sample nonuniform mesh

_4:::i_ 1.1_::_-

Table 2. Description of the multi-coil magnetic configuration considered for the R TD VASIMR thruster

shown in Figure 13. Here J is the total current in each coiL The current density function p in each coil is

computed as p = J / (Re - Rt)(Z: - Z_).

The uniform and nonuniform meshes used are demonstrated in Figure 14. For the 9FD4U method, the

computational domain was chosen as the union of two rectangles.' 0 < r < 0. 075, - O.1 < z< O. 7 and 0

< r < I, 0. 7 < z < 3. Such domain includes the area where plasma flow is observed. Since "difficult"

coils require too-large uniform meshes, the uniform-mesh domain excludes the coils. A piece-wise

uniform grid with 16 × 72 points is used for the first subdomain and the grid with 240 x 64 points _s

used for the second one. The 5FD5N method used nonuniform mesh with 100 × 300 grid points on the

domain [0 5] x [-5, 5].
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b) non-uniform mesh
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Figure 14. a) Sample uniform meshes used for the 9FD4U method (top half of the picture); area around
coils is not covered by the 9FD4U method; b) sample nonuniform mesh used for the 5FD2N method (bottom

half of th e p ictu re).

The accuracy of both methods is demonstrated in Figure 15. It has been found that there is about the

same level of the numerical error for both methods, which is below the current experiment

requirements of 10 -_. The numerical error for the 5FD2N method with nonuniform mesh is closer to a

constant than the error for the 9FD4U method with uniform mesh. The uniform mesh error is higher at

areas corresponding to a larger magnetic field. Also, the uniform mesh error has a discontinuity at the

interface boundary of sub-meshes.
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Figure 15. Relative error of the magnetic fieM for the set of 14 coils calculated on the symmetry line by
5FD2N and 9FD4U methods.

7. Computational complexity

The computational complexity involved in the solution of the problem generally implies requirements

on computer memory and speed. For some applications these resources may be limited. Hence the

proper choice of computational method is determined in the context of the full engineering problem.

To illustrate this point, we examine the tradeoffs in complexity as functions of the computational error

for the simple coil shown in Figures 8 and 10.

First, let us discuss computer memory requirements. One of the most efficient available iterative

solvers, the iterative implicit incomplete factorization method (IMIF9, [14]), requires the use of a

memory volume P = T,4M Nr N.-, where TaM is the number of 2D arrays used by the approximation

method. The size of arrays is equal to the number of mesh points of Nr N_. The 9FD4U method uses

T,4,_t= 12 arrays, and the 5FD2N method uses TAM = 9 arrays. Therefore, using double precision, a

conventional personal computer with 128 MB of RAM should be able to handle the problem as long as

the mesh does not exceed 1000 × 1000 points.

20



The requirements on computer speed are a bit more complicated to evaluate, as they depend on the

number of iterations in addition to the mesh size. An approximate formula for the number of

arithmetic operations Q, required by a numerical method to get a solution with given relative error 6, is

given by Q= UAT n(&) Nr(6) N:(6). UAT is a number of arithmetic operations used by a method, per one

iteration, per one mesh point. 9FD4U method implies liar = 45 and 5FD2N method implies UAr = 21.

n(&) is the number of iterations required to get numerical solution with an error less than ei. The

iteration error ei has to be much less than the relative numerical solution error 6. One can use the

following simple relation: ei = _2. As numerical experiments show, the number of required iterations

n(&) is between 20 and 40 for the iteration error ei = 10 -6 .

The mesh size for the fourth-order 9FD4U method is bounded by a numerical error as N_ < 0(61"4), N:

< 0(61"4). For the second-order 5FD2N method, the mesh size is defined by the relation N_ < 0(61/2),

N; < O(6V:). All this makes the Q(S) dependence to be quite complicated. Rather than attempting to

evaluate this expression, a set of numerical experiments has been performed for a simple coil (cl).

The results are plotted on Figure 16. The number of arithmetic operations is measured in million float-

point operations (MFlops).
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Figure 16. Numerical error 6 vs. number of arithmetic operation Q needed
for magnetic field calculation in cl-domain.
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From this figure, if one is interested in high accuracy, the 9FD4U method is faster, whereas if accuracy

is less important, the 5FD2N method is more desirable. As pointed out earlier, these results are

dependent on the complexity of the coil structure. For a relative error close to the current experiment

requirement of S = 0.001, the 9FD4U and 5FD2N require about the same number of arithmetic

operations for the "easy" c 1-coil problem considered here.

However, the second-order scheme using nonuniform mesh is a better tool for calculating a magnetic

field for more complex problems. One such complex problem is a multi-coil system including

"difficult" coils, when the magnetic field has to be calculated next to the coils. Another complex

magnetostatic problem is solving for the magnetic field in the presence of internal plasma currents,

where no semi-analytical solution for the calculation of boundary values is available.

The total computational cost of calculating magnetic field must include the cost of computing the

boundary conditions, when they are calculated by the numerical integration of formula (3). For simple

coil geometries, the numerical calculation of the boundary magnetic field requires many fewer

computations and gives much less error than finite-difference solvers. This is why the computational

complexity of boundary condition calculation does not affect the overall complexity of the magnetic

field calculation.

8. Conclusion

This paper demonstrates advanced computational techniques for an accurate computation of the

magnetic field of an axisymmetric electromagnet. These techniques involve the adaptive and uniform

grids, second- and fourth-order approximations, and use of a semi-analytical calculation of the

boundary conditions. The comparison analysis has been conducted for two approximation methods:

the fourth-order 9-point finite volume scheme using uniform mesh (9FD4U) and 5-point finite

difference scheme on adaptive nonuniform mesh (5FD2N). The approximation method of choice

depends on the complexity of the current sources (coils), specification of the computational domain for

finding the magnetic field, computational accuracy requirements, and available computational

resources,

For achieving the accuracy imposed by our experimental requirements, both 9FD4U and 5FD2N

methods have about the same computational complexity. If higher accuracy is needed, the fourth-order

scheme 9FD4U will have dramatic advantage over the second-order method 5FD2N. The 5FD2N

scheme is the best tool when the computational domain has to be of the large size or there is no semi-

analitical method for boundary values calculation. Such a case exists when the presence of internal

plasma currents affects the overall magnetic field. The numerical methods described in this paper have

been applied for solving an electrostatic problem, which is a part of the extended mathematical model

in the magnetoplasma rocket simulation [2].

Numerical predictions of the field generated by an axisymmetric electromagnet are also being applied

to experimental investigations of the VASIMR system in the laboratory. The magnetic field contours

shown in Figure 17 are outputs of this predictive tool. Actual photographs of the plasma show plume

divergence as predicted by the code.
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Figure 17. Magnetic field in the present VASIMR configuration calculated by the numerical code

together with superimposed photographs of plasma source and plasma exhaust. Magnetic field lines are

plotted for the area with a plasma flow, as well as the magnetic field strength contour lines. The bottom

part of the figure demonstrates a 1D plot of the axial magnetic field along the symmetry line.

The 5FD2N method is currently used operationally to design an experimental configuration of the VX-10

device at the ASPL. For given electromagnet geometries and current values, the magnetic field is calculated

and plotted (Figure 17), as well as contour lines for the magnetic field strength. The present code allows the

determination of the electromagnet currents needed to generate a required magnetic field. Another important

application of the magnetostatic solver based on the 5FD2N method is a self-consistent simulation of plasma

flow in the VASIMR.
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Figure 18: Local numbering used in tile compact 9-point finite difference scheme (17) and two boxes

around mesh node (i,j), used in finite volume discretization (21).

Appendix 1: Compact finite difference schelne of the fourth order

Our goal is to derive the compact finite difference approximation of equation (2) of the fourth order

at the uniform grid with mesh steps h_ = h_., h_ = h¢ (here "compact" means that only the closest, to

the central point mesh points are included into the stencil for approximation). To get. this, we define

the scaled one-dimensional (1D) differential operator

1 0 tOu
Lru = - L,-u - - (13)

r Or r Or " "

and its three-point approximation with the following property:

1 (tli,_Zlti_l, j + tti,_Zlli...+l,j ] =(_r _ h2rLrrLrll)i,j +O(h4) ' (14)
(]_hru)i'J = h2r \ ri_l/2 ri+l/2 / - 12 •

where ri:kl/2 --- (ri + ri+l)/2. The validity of this relation can be checked by Taylor expansion.

From (14) and similar definition of another 1D difference operator

(Lhzll)i'J _ -_z (2lli'J -- lli'J--1 -- 'lti'J+l) ---- (Lztl - L2zll)i'J + O(h4) (1,5)

we have the following nine-point scheme of order O(h4):

r 2 "h h 2 h-h ]( Lhu)i,j = ,'L h u + L h t, - --_( h.,.L,. L_ tt + h.:L z L r t, )j.
%3

l 2-h 2 h

= f_,j - -_(rh_L_.f + h_Lzf)_,j + O(h4). (16)

The validity of this relation is proved by the direct substitution of lhe expansions (1,1), (15) in (16)

and using the original equation (2) for the terms of the second order. The function .f is required to

have bounded fourth derivatives.

Let us introduce the local numbers for the nodes of the nine-point mesh stencil in accordance with

Figure 18. Then we can write the resulting grid equation of the mesh point (i,j) in the form

8

pOi,jUo - _ pki,juk = fOi,j, (17)
k=l
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where the coefficients and right-hand side are given for ri > 0 l)y the following formulas derived by

multiplication of ID finite-difference operators:

pOi,j

p3i,j

p2i,j

p7 i,j

fOi,j

8

E Pki,J '

k=l

-- 6h2rri+l/2(5 - _) = pli+l,j,

2q h_ h_

= ah_(4,._- t,_1('5- h_ - 3_1 = p<j_,,
1 l 1

- ( +
12ri+u 2 _ _) = pSis-1 = p5i+l,j-1 = p6i+Lj,

ri •= k,j - 1__[ _ (k,_- k-i,j) + _(f_,_ - k+l,j) + 2k,_- k,j-i - f_,j+d.
12 ri_l/2 ri+l/2

(1_)

All the coefficients (18) are positive under the conditions

2 22/7 < h_/h_ < 5. (19)

If we have the Dirichlet condition on all of the boundary 0f_ of the computational domain Ulon = g(r, z)

(the simplest case is g = 0), then an algebraic system of linear equations (17), (18) can be rewritten
in vector-matrix form

.ah_h= A, _'h= {'_,j}, A = {f0_,_}, (20)

where Ah is a symmetric and positive definite matrix for an arbitrary ratio of the mesh steps. Ah is

a Stieltjes type matrix, i.e. it is monotone (Ah _ > 0, see [14] for example) only under lhe conditions

(19). The convergence rate O(h 4) of the error of this scheme can be proved in the Euclidean or

maximum norms by usual techniques, like it was done in [7, 8].

The generMization of the high-order discretization using finite volume approach is described in

Appendix 2.

Appendix 2: Finite volume approximations

Using direct finite-difference approximations, it is impossible theoretically to get high-order accuracy

if the functions u and f don't have smooth enough derivatives.

So, our second approach consists of constructing the finite volume scheme for the piece-wise smooth

function f. The approach is based on the approximation of the integral equation obtained by formal

integration of the differential equation (2) and coincides with the fourth-order equation (16) in the

case of a uniform grid and a smooth function f.

A similar finite-volume scheme for the Poisson equation in Cartesian coordinates can be found in

[8, 9]. Such schemes are not investigated thoroughly for partial differential equations in cylindrical
coordillates.

In accordance with [9], we introduce the small and big boxes around the (i, j) mesh-point:

- h,_,/2<r < +h,/2, - hj_,/2< <_ +h,/2}. (21)l },j

- { }l'i,j = ri-1 < r < ri+ 1, zj_ 1 < z < zj+ 1

and denote their boundaries by ,5'i,j and ,5"i,j respectively, as shown in Figure 1£.
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Let us inlegrale1)5"parts the left sideof equation(2) overthevolume

zi+a/2 ri+ll2

+ tz,, ),:_ = [ ! °" l;,+,:_,t="_ + t --- 9-1-1[2

, r J rot -I " J rOzZJ-'l_
g i,j z s-1/2 7"i-1 ]2

dr

and consider the linear combinaiion with a weight parameter 0 _< u' _< 1 of the integral relations for

the small and big boxes

h,j = u, S I=d,9 + (1- w) S I_dS

Si,j -Si,i

= +i,- J z.,.,,z.
rio Vi,j

(22)

10u 10u

ttere I '_ is tile projection of tile vector I = (IT, lz) = (-- r Or' r Oz )" We assume also that some

jumps of fnnction f are possible only at the grid lines r = r i, z = zj.

To approximate equation (22), we introduce sub-volumes l_l,j, _--,Il_ i,j, [ = 1,2,3,4 which are tile

result, of subdivision of I'i,j and Vi,j by the grid lines into four parls:

4 4

V.. = I [ V.I. IIV I
,,: k.J ,,:, ,,i = k.J ,,J"

/=1 /=1

9! and -zlWe define corresponding fluxes If. through the sub-volume surfaces , _,: '_i,j:

4

li,j = U 1!.,,: (23)
/=I

and write with the help of (22) the necessary relation for I = 3 in more detail (right upper sub-volumes

for r > ri, z > z j):

ri+a/2 - _

zj+al2

t 10. d [ O"l a"l
-I!,:_'--w z,J _-_1i+,/, z + ,-iJ _ j+1/_7)

[7'(,o,,1, ,_o,,i o,,I+(1 - ,,,) kT_ + _ o,, i+,) it: + j to= _ + o= J+') "
L Z3 ri

(24)

Additional terms with the integrals over the "internal" boundaries between sub-volumes are included

here to improve the approximation of the derivatives. It. is important that in the sum (2:1), additional

terms annul because of the continuity property of the solution and its fluxes.

Then by applying the simplest quadralure formulas and the linear interpolation of the terms under

the integrals, we can write the flux l[,_) as some linear form of four values ut:

1[3) = pOOi,juo + pO3i,j u3 + pO4iju4 + pOSi,jus. (25)

If tile fourth-order vector g(3) = (Uo, u3, u4, Us), whose components are the values of the solution in

the vertices of tile finite volume l =(3-) and vector 7 (3) = (I (3) I (3),/4(3) is(3)), whose entries are the
1,3 "
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"partial" fluxes around corresponding nodes (for exa.mple, i_3) = l[,3j)

one can write in vector form lhe following relalion 1)elween lhem:

pOOi,j pO3i,j pOdi,j

7(3) = :1(3)g(3), ,4(3) = p3Oi,j p33i,j p3,1i,j
plOi,j p43i,j p44i,j

pSOi,j pS3i,j pg4i,j

fl'mn (24)), are introduced, lhe,,

pOSi'J)
PasiJ . (26)
p48i,j

pggi,j

Itere the fourth-order symmetric matrix A(3) (pkli,j = plki,j) can be called the local balance matrix

by analogy with the local stiffness matrix of finite element methods, introduced in [16].

It is easy to show that the elements P[<i,j of the "global" balance matrix Ah from system (17), (20)

can be written via the entries of local balance matrices by the formulas

pOi,j = pOOi,j q- p33i-_j + p4"li,j-1 + p88i-l,j-1, p3i,j = pli,j = pO3i,j -{-pOSt,j-i, (27)

p4i,j = p2i,j = pO-li,j + p38i-1,j, pSi,j = p7i,j = p5i,j = p6i,j = pOSi,j.

In practice, instead of implementing these formulas, it is preferable to assemble the global matrix

Ah in an elelnent-by-element technique which can be presented by the following pseudo-code for each

sub-volume 1 }l,j:

pOt,j: = pOi,j + pOOl,j,

pOi,j+l := pOi,j+l + p44i,j,

p3i,j: = p3i,j + p03i,/,

p4i,j:= p4i,j + pO4i,j,

PSi,j: = Pgi,j + pOgi,j,

pOi+l,j := pOi+l,j + p33i,j,

p0i+lo+I := pOi+l,j+a + p88i,j,

p3i,j+l := p3i,j+l + p48i,j,

p4i+l,j := p4i+l,j + p38i,j,

p7i,j+l := p7i,j+l + p34i,j.

(28)

It is possible to use different approximations of the integrals in (24). We apply quadratures which
v--;.3

follow from the linear interpolation of the functions under the integral over the surface of I i,j:

_i.3 = _ 3h_
,,a w [ 8hrri+i/2 [3( at, j -- Ui+l,j ) d- lti,j+l -- Iti+l,j+l]

-t-_ [(\FI+I/2hri ]_ (tti+l,j-- ?li+l,j-t-1)-_ (7")'i+1/2 ri.t_l/2hr 11(Ui'J -- 11i'j+1)] } (29)

]
_ 7i+112 t tt -- -- I

__ -- ,

J+(I - w) hi_._i+ll2(Uij Ui+l.j+ul.j+l Ui+lj+l) +---£7--._hj i''/ uij+l + Ui+lj ui+ij+1)

Here tile values _i+112 are defined from the condition that the entries pitt, j of the global matrix Ah,

which are assembled via the elements pkli,j of the local balance matrices by the formulas (25) (28),

coincide with the coefficients (18) of the compact finite difference scheme of order O(h 4) in the case

of uniform grid and w = 16/15. This condition has the recurrent form

l?[ + hr_l hr
N,.+I i = X,.,..., 1 (30)

_[i-1/2 = ri -- _'i+1/2, *IN,.+I/2 -- rNr+l/2,

and provides the following formulas for the entries of the local balance matrix:

1 [(1-5w'] h_ w hri] (1 15w_9i+1/2,- 727 -----_ -
pOai,j= p'18i,j ri+112 8 J h i 16t, jj _)-)]

(1 9"'_ '_/+1/2 1 [U' ,,r -Jc (1 7R'_ h;]

pO4i.j p38i.j \ 16J[(_hi )_ ri+,l2 [16hj+. _--8-J _-,'h_ w h:] (1 15u,) _Ii+1/2
pOSi.j p34ij ri+l/2

pOOi,j = pOa_j + pOli,j + pORi,j = paa_,j = pd4ij = p88i,j, pt<Ii,j = plkij.
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The approximalion of the righl-hand side of equation (22) can be made in a similar cell-by-cell

approach, so the value fOi,j from (20) is assembled as

---- r(3) f(3) f(3).fOi,j f(3) + J3,i-l,j + J4,i,j-1 + J8,i-l,j-l" (31)

Here the following "local" terms are defined from the numerical integration on the sub-volume 1"(3):,o

3tV S-- 771' rifi, j --ri+lfi+l,j )]hrh; ' (3.))fo%= [(,- ( +P','-",'+'
ri+l/2

f(aa,i!j = [(1- ---_)Pi+l,j3u' 8-i67W ( ri+lPi+lri+l/2-riPi,j + Pi+l,j - Pi+l,j+l)]h:t_, (33)

'_ _ 7'

Jr(3)4,i,j = [(1 - T3_-")Pl,j+l 8--16, R (. i+lPi,j+lri+l/2- ri+lPi+l'j+l + [i,j+l -- Pi,j)]hrh;, (3-1)

•'s,i,j_'(3) = [( 1 - -_-3tc)Pi+l,j+l 8--167t" ( ri+lPi+l'jTlri+l/2- riPi'j+l + Pi+l,j+l- [i+l,j)]h_h;, (i 35)

where Pi,j = f(ri, zj)/ri a.t the line of jump corresponds to "own" sub-volume. It is easy to check

that formulas (31)-(35) provide for u, _6 the term f0_jfrom (18) in the case of a uniform grid.=ig
One remark: in fact coefficients in (18) in Appendix 1 differ by the multiplier (1 - }w) (h, r. + h___)

(h_ + h__ 1 )/4, which is the "weighted" cell volume.

These formulas provide the symmetry of the local balance matrix A (a) and global matrix Ah. The

values "_i+1/2 are positive for the quasi-uniform grid. For the general nonuniform grid, the a.pprox-
imation of this scheme is of order O(h) only and the matrix Ah is monotone under strong enough

conditions for the ratio of the mesh steps (19).

Appendix 3: Computation of boundary conditions

It is known [12] that the magnetic field of a single current ring for the unit magnetic permeability is

given analytically by the following formulas for the axisymmetric azimuthal component of the vector

potential A and r- and z-components of the induction vector B:

s (r + r') 2 + (z- z') 2' (36)

2J [(/)2 + re + (z - z')2 E_ K]Br(,', _) = r,/(_' + r)2 + (_ - _,)2 [ (r_---_)-_-7 (7"2 _,)--_ _
(at)

'_J [(r')_ - r_ - (:-- z')_E + IC] (3,_)_=(r,_)= /(,., + r)=+ (:_ z,)=i (,7_-;ffg_ (7 _ _,)= • _

Here r _is the ring radius, .J is the ring current, z_ is the coordinate of its center in cylindrical coordinates

r, z and K, E are full elliptic integrals of the first and second kind respectively (see [13]), for which

the following series are valid:

1K: 1 [ (1) 2 (1"3) 2 (_'3"5) 2 ]
_ 84 ,6 + ...
7r _ 1+ s2+ _ + 4

2 2 (1"3"_2 2 3 "3-5 2 4 "3"5"" _6+ ....
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By tlle definitionsof .s,E and K, it is possible to show that A(0, z) = B_(0, z) = 0.

The computation of lhe magnetic field generated by a coil with arbitrary cross section call be made

by numerical integration of analytical fornmlas (37), (38) over the coil cross section

c={0<Rl<r'<R2, Z_ < z' < Z2}. (39)

The foIlowing formula., which can be obtained fi'om (36), is used to compute the boundary va.Iues
of the solution:

R2

u(_,_,)= p _/(r + r'? + (z - z')2M(_,2),tr'd:',, M(.,_)=_ g(1- V)ZC- _e,_.
R1 Z1

(40)

where p is a uniform current density and the coil cross section is lhe region R1 < r _ < R2, Z1 < z ! < Z2.

For the underintegral term M(._2), the following series can be derived via the expansion for full elliptic

integrals K, E:

• . _ + ... = _,>_+_.
_]/'(_g2) ---- _4 g + _ 82 + 4 16 p=o

(41)

Instead of M(s 2) we use a calculation of its approximation for s < 1:

n

M_(__) =_c,_ 4+_'.
p=O

(42)

To understand the convergence rate of :ll_(s 2) when n _ _c, the values of

(r -/)2 + (z - z')2_

)4rr I

-1

can be estimated for (r,z) at the boundary of the computational domain (r = R3 or z = Z2) and

(r', z') from the coil cross sect.ion (39) by the following inequality:

{( R2, /1(s 2 <_ max 1 + 7_R-22 , 1 + -4R_R--22 "

For example, if R3 >_ 3R2 and Z3 - Z1 >_ 2R2, then s2 <_ 0.75. So, if the domain boundary is away

from the coil, then the value of s 2 decreases and the error of approximation of M(s 2) by M,_(s 2) for

the fixed n is improved. More exactly, the cutoff error cn can be estimated by the following relation:

_,_= M(_2) - M,ds _) =
p=n+l

CP _4+2p <-- Cn+l'q4+2(n+l) Z 821 <- Cn+l"44+2(n+l)/( l -- "s2)"

1=0

Our computationaI strategy is a. mixed one and consists of numericaI integration with respect to

r _ by the simplest central rectangle quadrature rule

R2 m

R1 /=1

3O

1
r_ = R1 + (1 - -_)hc,

R2- R1
h_- , (43)

rr_



or by tile Simpson's quadrature

t_(r, z) = p--C(,,:n( r 1 ) _- "t- "1- ... At- 11 "

or by the Gauss quadrature

,,(r, z) = pt, c (Cl_'n(ri) +... + Cm_n(rm)) + Cn + @,

rl'= R1 + (I- 1)he ' (4.1)
2

(45)

where

za

=[ q(,.+r')=+
al

//2 z2

<. : t)iSq(r-_l-r')2--t-(z--z#)2_.ndr'dz' __ pd{R3-t-- R2)2-{-(Za - ZI)2(R2 - R1)(Z2- ZI)En

R1 Z1

with the given integer m. ttere c(_), i = 1, 2, 3 are the errors of different quadratures. The total error

of such approxiniation is

= C,_+ e_) = 0(t, 7 + :g2n+6), i = 1,2, a = max {._(r, r', z, z')},
(,-', ,') _ c,
(r, z) _ a_

where 7 = 2 for quadrature (43) and ? = 4 for (44) and can be made as small as necessary with

sufficiently large integers m and n. The optimal Gauss quadrature points r k and the coefficients Ck

in (45) are defined in [17], for example. The error e(ma) of lhe Gauss quadralure is estimated by the

inequality

e(3m)< (R2-R1)2m+l(m!)4. max { d2m_n(r') }t,dr,j2-( m- [(2m)!]3(2m + 1) RI<_'<R2
Q

As for the error e,_, for 82 < 0.75, for example, we have e23 _< 4.2 • 10 -9, e33 _< 9.5.10 -12.

To compute _'n(r') we use the auxiliary recurrent, relations for the following integrals:

6p(:,,,t) = i d, 6,(x,t)= i dx x

¢_p+3(x,t) - t(2p+ 1) (v_.r 2 + t)2p+ 1 + 2p&2p+l , p = 1,2,... (.16)

If we denote now

Op(r, r', z, Z1, Z2) = Op(Z - Z2, (_' q- r#) 2) - d)p(Z - X 1, (r q- 1J)2),

then it is possible to write the result iltg formula to compute ,_'n(r_):

_n('rf) = E Cp(4r_r)P+272p+a(r , rl, %, ZI, Z2) , (47)

p=0

where coefficients Cp are defined in (41).

The stable computation of ,zn(r I) is held by using the recurrent procedure. Namely, we define the
new functions

_2p+3 ----- (4rrt)p+a12-_2p+3. P = O, 1,...,
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whichare computed from the relations

m=_ e5
]

2p+l

1
• : [ (r+r') 2

-{- 2pO2p+l ;3 =

l'" 4rr I

and calculate -,_n(rf) by the formula

n

_2n+3 8 // 5IU*'n(r_) = _";n-l(r_) "}- -1--4(;'t- [) =

The presented formulas provide high accuracy of computing the boundary conditions for increasing

integers m, n if the value of _2 is not very ('lose to unity.

Appendix 4: 1D test

This section describes convergence of finite difference methods of tile magnetostatic problem in a

case when the solution depends only on one (radial) variable. Then we can present an algorithm of

generation of 1D nonuniform meshes.
Consider a coil in the shape of the infinite solenoid with internal and external radii R1 and R2

correspondingly. Assume that the coil has a.n azimuthal electric current with unit density, and the coil

is placed inside an infinite conducting cylinder with radius R3. The magnetic field for such system is

one dimensional, t3 = (0, 0, B_(r)) and has the following analytical expression:

{ R_-R_-2d,
B_(r) = R2 - 2 - r,

-2d, = (R 3 - R3)/(6R_),

0< r < R1,

R 1 < r < R2,

R2 < r < R3.

(48)

That solution is displayed in Figure 19.

Corresponding magnetic flux u(r) has the following analytical formula

d(R32- .,.2),

\
d) r _, O< r <_ Ra,

/

R_ r3
R1 < r <_R_,

6 3'

R2 < r < R3,

(49)

which can be found as a solution to the following 1D problem

0 1 Oat

0r r 0r --p' u(0) = u(R3) = 0 (50)

with a piece-wise uniform current density p = 1 for R 1 < r <_ R2 and p = 0 otherwise. The coil radii

are R1 = 0.4, R2 = 0.6, and domain size R3 = 1.0 for the fieht shown in Figure 19.

When the 9FD4U method is used, the computations give zero error (in the sense of accuracy of the

iterative method) both for the uniform and nonuniform grids. It was expected, that the error should

be of order O(h 2) because of the discontinuity of the right-hand side and nonuniform grid. In fact,

the error is even better lhan O(h4).

The applicalion of the 5-point scheme 5FD2N (6) for the boundary value problem (50) with the

same 1D solution, but for different R3, provides the following results presented in Figure 20. Here the

32



-1

-2

-3

I

I

fJ
I

• I

)

I

I

I

I

_r

i I

-0.5 0 0.5

Figure 19: One-dimensional magnelic field for the infinite solenoid with internal radius R1 = 0.5 and

external radius R_ = 1.0. Outside conducting wall is assumed to be placed at R3 = 2.5.

10 -7

I I I

50 100 200 400

Figure 20: Relative error of the ID ca.lculation using 5-point scheme (6) on nonuniform mesh. R1 =

0.49, R2 = 0.51, R3 = 1, 3, 10. For each N_ and R3, the nommifornl mesh was buill to minimize the

relative error.
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relativeerror is definedas
max {lu(rl) - uA(ri)[}

(S = 0<r,<R3

max (lu(ri)l} (51)
O<ri <R3

The plots show that the error is going down as fast as :Y], where N, is lhe number of grid points.

Also, error is less for smaller domain size R3 due to smaller mesh size.

Let's describe the algorithm of generating an adaptive nonuniform mesh for the following I D

domain in radial direction. The computational domain f_ = [0, Ra] was divided into five subdomains:

Q1 = [0, R1/2], f_2 = [R,/2, R,], _3 = [R1. (_1 ÷ R2)/2]-__4 : [(R1 ÷ R2)/2, R21, __5 : [R2, R3]. The

grid was created to be fine next to singular points: r = 0, r = RI and r = R2. In fil,Qa and f_5 the

grid step size satisfies the following relation: hi+l = hi(1 + 6h), in ft2 and f_4: hi+l = hi�(1 + 6h),

where ¢Sh > 0 is a relative increment of the grid-step. This means that in each subdomain Qk, the

length L(f_k) can be expressed through a number of mesh steps .V_ as following:

L(Qk) = h.rnin + hmi,(1 + 6h) + hmin(1 + _h) 2 + ...hmin(l + 6h) N#'-I -- hmin ((1 + _h)N; - 1) /bh.

The 1D adaptive mesh generation has the following three steps.

1) For given N_ number of points and for given relative mesh increment _h, create nonuniform

mesh in the domain f_. This requires us to find 6 unknowns: the number of grid steps in subdomains
i rI' ,,g!"

N{', N_, N_, 744, :\s and the minimal mesh size brain. The unknowns must satisfy the following 6
equations:

5

hmin((l + 6t,) N[ - 1)/6h = L(flk),L" = 1,...5;_ N; = N_; (52)
k=l

The following iteration process works efficiently to resolve the above system:
I Tr,a) Start with initial guess for 5s,

b) Calculate h,mi,, = L(fls)ah/((1 + ah)N2 - 1);

c) Calculate J\'_ = ln(1 + L(flk)6h/h_in)/In(1 + 6h) for k = 1,...4;
a) Check: if EB=, :v# < .a_, then increase N_ by one and return to b). If _=_ N[ > N_. the,, reduce

N[ by one and return to b) until convergence.

2) Calculate error _. (51) of the numerical solution for the generated mesh, using analytical solution

,t(r) (,1.9).

3) Optimize mesh by minimizing the error _ with respect to the relative mesh increment _h. It

was found that the function 6(6h) is a convex smooth function with one minimum (see Figure 21),

which can be found using the following iteration process:

a) Start with minimal 6h 1, maximal b/_4 and intermediate 6h3: tSh1 < tSh3 < 6h 4 and calculate

corresponding errors 61,63 and 64, using step 2);
b) Cah'ulate another intermediate bt_2 = v_ with corresponding error 6z;

c) If _2 > 63, then assign ¢Sh1 = 6h4,ah 4 = ¢Sh2 and return to step b), else assign ¢sh4 = bbl,6h 1 =

6h 3,6h a = _h 2 and return to step b).

The described nonuniform mesh in radial direction can be efficiently used for solving 2D problems,

because the 2D solution at the vertical symmetry plane z = 0 behaves similarly to the ID solution

(4s).
Now let us describe the method of generating a.n adaptive nonuniform mesh in the axial domain.

To do this we use a similar approach as used for the radial grid. Consider behavior of the magnetic

field of a single coil along the middle radius line r = (R1 + R2)/2. For values of z inside the coil:

z < Z2, radial component //_ goes up from zero to its maximal value at the coil edge. Outside the

coil, B_ goes down. approaching zero at large ,. It is hard to find a 1D magnetostatic problem in
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Figure 21: Minimization of the numerical error with respect, t.o the relative mesh step increment.

Cartesian coordinates with a solution having that behavior, but a solution of the 1D problem for an

infinite cylindrical wire with uniform current behaves in a very similar way:

"(:) = z_

0<z< Z2,

Z:2 _< z _< Z3,
(53)

That solution is displayed in Figure 22.

Corresponding magnetic potential A(z) has the following analytical formula

YCln

O<z<Z2,

Z2 < z < Z3,

(54)

which can be found a.s a solution to the following ID Poisson problem

10( ) 0.- o: z = p,-b-#z(o) = o,A(z3) = o (.55)

with a. piece-wise uniform charge density function p = 1 for 0 < z < Z2 and p = 0 otherwise.

In formulas (53, 54, 55) we used variable z for the radial coordinate because the formulas are used

to generate an adaptive z-mesh as described below.

The computational domain f_ = [0, Z3] was divided into two subdomains: f_l = [0, Z2], Ft2 =

[Z2, Z3]. The grid was created to be fine next. to the only singular point.: z = Z2. In -ql lhe grid step

size satisfies to the following relation: tti+l = hi/(l + _b), in ft2: hi+l = tti(l + _l_), where 6h > 0 is
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Figure 22: One-dimensional magnetic field for tile infinite wire with radius Z2 = 0.5.

a relative increment of the grid-step. It meaas that in each std)domain ftk, the length L(-Qk) call be

expressed through a number of mesh steps ?,:f as following:

L(Qk) -- hmin Jr ttmin( l Jr _]1) n L ]train(1 _- _]-t) 2 -t-...hmin(l Jr thh) N_-I = hrnin ((1 + _h )N_ - 1)/_h.

The 1D adaptive mesh generation has the following three steps.

l) For given N_ number of points and for given relative mesh increment fh, create a nonuniform
mesh in the domain ft. This requires us to find 3 unknowns: the number of grid steps in subdomains

N_', N_ and the minimal mesh size hmin. The unknowns must satisfy the following 3 equations:

+ eh)N: - = [;(Ok), = :,2; ,¥; + x: = x.; (56)

The following iteration process works efficiently to resolve lhe above system:

a) Start with initial guess for :Y_;

b) Calculate hmi,_ = L(f_2)¢Sh/((1 + 6h) N; - 1);

c) Calculate _\'_ = ln(l q- L(f_l)eqh/hmin)/ln(1 q- _h);

d) ('heck: if N_" + .V_"< .\'_, then increase .\'_ by one and return to b). If :Y_"+ :\'_ > .\'_, then reduce

N_ by one and return to b) until convergence.
2) Calculate error _ (51) of the numerical solution for the generated mesh, using the analytical

solution u(r) (51).

3) Optimize the mesh by minimizing the error 6 with respect to the relative mesh increment _h.
The minimization is done using the same method as for generating the adaptive r-mesh, described

above.
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Appendix 5: Calculation of the magnetic field on the symmetry lille

Accurate calculation of the magnetic field Bz on the symmetry line requires use of both the fine grid in

the radial direction and the high-order finite difference approximation. Taking into consideration the

zero conditions for magnetic flux: u(0, z) = 0 and the magnetic potential: A(0, z) = 0, the following

analytical formula can be used for computing the axial magnetic field:

B:i0, )=lim (1-
,'-o \ r Or',/ = -O-_r2 (O' z )"

The formula can be approximated be the following second-order finite difference expression:

2 ui ,j
B_(O, zj) - (h[)2 + O(h2)' (57)

or the fourth-order finite difference approximation:

z?i0.:j) = I,_(2/,_ +1,_) (t_+h_ 2,_.j_ \(I_ +/4) _,2._-+o(t_4). (ss)

These approximations are derived from the Taylor expansion of u(r, z) near the axis under the condition

Ul,j = 0, as well as the smoothness and symmetry property of the solution. Let us note that for a test
function u = r 2 + ar 4, the exact value is B_ = 2 and its approximations B h of the second and fourth

orders equal 2(1 + elba) and 2 respectively.

Appendix 6: Convergence in the boundary condition calculation

The numerical error of the magnetic field depends on several factors: the distance H = mil_{Za -

Z:_, R3- R2} of the domain boundary from the coil, the number m of quadrature points in the numerical

integration (43), the number 77 of the roundoff in the series (42) and the characteristic mesh-step

(R3 - R2)/m. We consider the influence of these parameters on the example of the rectangular coil

el.

We use three variants of the domain boundary at a different distance from the coil. These bound-

aries are defined by the following computatiol_al domains (Ft = {0 _< r < R3. 0 _< z < Z3}):

_'_1 : [i)3 ---- Z3 : 2, _2 : R3 = Z3 = 4, _3 : R3 -- Z3 = 8.

Itere wi? take into account that, due to the symmetry property of the field for the single coil, the

Neumann boundary condition Ou/Oz = 0 is used at z = 0 and the computational domain includes the

half of the coil for z > 0. We need to distinguish these domains because lhe value of ._2 decreases when

the distance H increases. So in the series (42) we can take a. smaller number of terms n and decrease

the computational costs. Moreover, the underintegral function in (43) is smoother in this case. So it

is possible to use a smaller number m in the quadrature formulas.

In Table 3 we present, the relative errors

_=max{b,j=3 ua(R3'zJ)- "(m)(Ra'zJ) }_la(R;_

of the boundary values for different integers m, distances R3, and sufficiently big n = _-. Errors of

numerical integration are denoted by _ and /_ for the rectangular quadrature formula (43) and the

Simpson's quadrature formula (4:1) respectively. Actually, we define

ua(R3, zj) = tt(_)( R3, zj),
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where7-57is theminimalvalueof m which satisfies the condilion

max: 1u(m)( R3,ilTm_)(_R__.vzJ) - u(m/2)( R3, Zj) I <_( _--" l 0 -13.

It means that, in some sense, u(m)(R3, zj) is an "almost exact" numerical solution at the boundary.

Here _-7= 200, 7_ = 32 were taken.

m 1

_1 : _s :1-1"10-4

f_l : 3r 0.045

f_2 : _, 2 .7"10-5

f_2 : 3r 0.038

_3 : 6s 5.6"10-6

f_3 : _r 0.036

8.2.10 .6

0.011

1.7.10 -6

0.0095

3.5.10 -7

0.0091

5.7.10 -7

0.0028

1.1.10 -7

0.0024

2.2.10 .8

0.0023

3.7.10 -s

0.00069

6.7.10 -9

0.00060
1.4.10 -9

0.00057

2.3.10 .9

0.00017

8.6.10 -11

0.00014

Table 3. Errors of numerical integration for coil "c1"

Tile table shows thal the error is of order O(m -2) for tile central rectangle and O(m -4) for tile

Simpson's quadratures and the last ones give an essentially smaller error. For a big distance H the

quadratures are more precise. Let us note that the calculations using Gauss quadratures provide

considerably higher efficiency. Its error for m = 7 satisfies the inequality _,g < 10 -14 for all three types

of the computational domain.
Table 4 includes the errors

_= max {[_J = l ua(Ra'zj--_)-t-t(n)---(R3'2j) }jua(R3, zj)

of the boundary values for a different number of series terms in (42). The quadrature used is Simpson's

one. Here u_(R3, z5) is the "e-asymptotically" exact numerical solution with N = 200, _-= 64.

n 2

fh 0.44

ft2 0.19

ft3 0.067

Table 4.

Note that n = 32 is not

4 8 16 32

0.22 0.072 0.011 5.9.10 -4

0.0.15 0.0034 3.5.10 -5 8.4.10 -9

0.0056 5.8.10 -5 1.2.10 -s 2.0-10 -15

Errors of computing the elliptic integrals for coil "cl"

enough for f_l if high accuracy is required.
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